p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.9C23, C42.90C22, C22.26C24, (C2×C4)⋊8D4, C4○(C4⋊Q8), (C4×D4)⋊9C2, C4⋊Q8⋊19C2, C4⋊1(C4○D4), C4○(C4⋊1D4), C4.82(C2×D4), C4○3(C4⋊D4), C4⋊1D4⋊10C2, C4⋊D4⋊20C2, (C2×C42)⋊12C2, C22.1(C2×D4), C4○2(C4.4D4), C4.4D4⋊18C2, C4⋊C4.72C22, C2.12(C22×D4), (C2×C4).160C23, (C2×D4).63C22, (C2×Q8).56C22, C22⋊C4.14C22, (C22×C4).125C22, (C2×C4○D4)⋊3C2, (C2×C4)○(C4⋊D4), (C2×C4)○(C4⋊1D4), C2.13(C2×C4○D4), SmallGroup(64,213)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.26C24
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e2=b, f2=a, ab=ba, dcd=ac=ca, ad=da, ae=ea, af=fa, ece-1=bc=cb, bd=db, be=eb, bf=fb, cf=fc, de=ed, df=fd, ef=fe >
Subgroups: 233 in 155 conjugacy classes, 85 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C42, C4×D4, C4⋊D4, C4.4D4, C4⋊1D4, C4⋊Q8, C2×C4○D4, C22.26C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, C22.26C24
Character table of C22.26C24
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 4R | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ17 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 2 | -2i | 2i | 0 | 0 | -2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | -2 | 0 | 2i | 2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | -2 | -2i | 2i | 0 | 0 | 2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | -2 | 0 | -2i | 2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | -2 | 2i | -2i | 0 | 0 | 2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 2 | 0 | -2i | -2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 2 | 2i | -2i | 0 | 0 | -2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 2 | 0 | 2i | -2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
(1 15)(2 16)(3 13)(4 14)(5 18)(6 19)(7 20)(8 17)(9 22)(10 23)(11 24)(12 21)(25 31)(26 32)(27 29)(28 30)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 22)(2 21)(3 24)(4 23)(5 32)(6 31)(7 30)(8 29)(9 15)(10 14)(11 13)(12 16)(17 27)(18 26)(19 25)(20 28)
(1 25)(2 26)(3 27)(4 28)(5 21)(6 22)(7 23)(8 24)(9 19)(10 20)(11 17)(12 18)(13 29)(14 30)(15 31)(16 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 19 15 6)(2 20 16 7)(3 17 13 8)(4 18 14 5)(9 31 22 25)(10 32 23 26)(11 29 24 27)(12 30 21 28)
G:=sub<Sym(32)| (1,15)(2,16)(3,13)(4,14)(5,18)(6,19)(7,20)(8,17)(9,22)(10,23)(11,24)(12,21)(25,31)(26,32)(27,29)(28,30), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,22)(2,21)(3,24)(4,23)(5,32)(6,31)(7,30)(8,29)(9,15)(10,14)(11,13)(12,16)(17,27)(18,26)(19,25)(20,28), (1,25)(2,26)(3,27)(4,28)(5,21)(6,22)(7,23)(8,24)(9,19)(10,20)(11,17)(12,18)(13,29)(14,30)(15,31)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,15,6)(2,20,16,7)(3,17,13,8)(4,18,14,5)(9,31,22,25)(10,32,23,26)(11,29,24,27)(12,30,21,28)>;
G:=Group( (1,15)(2,16)(3,13)(4,14)(5,18)(6,19)(7,20)(8,17)(9,22)(10,23)(11,24)(12,21)(25,31)(26,32)(27,29)(28,30), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,22)(2,21)(3,24)(4,23)(5,32)(6,31)(7,30)(8,29)(9,15)(10,14)(11,13)(12,16)(17,27)(18,26)(19,25)(20,28), (1,25)(2,26)(3,27)(4,28)(5,21)(6,22)(7,23)(8,24)(9,19)(10,20)(11,17)(12,18)(13,29)(14,30)(15,31)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,15,6)(2,20,16,7)(3,17,13,8)(4,18,14,5)(9,31,22,25)(10,32,23,26)(11,29,24,27)(12,30,21,28) );
G=PermutationGroup([[(1,15),(2,16),(3,13),(4,14),(5,18),(6,19),(7,20),(8,17),(9,22),(10,23),(11,24),(12,21),(25,31),(26,32),(27,29),(28,30)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,22),(2,21),(3,24),(4,23),(5,32),(6,31),(7,30),(8,29),(9,15),(10,14),(11,13),(12,16),(17,27),(18,26),(19,25),(20,28)], [(1,25),(2,26),(3,27),(4,28),(5,21),(6,22),(7,23),(8,24),(9,19),(10,20),(11,17),(12,18),(13,29),(14,30),(15,31),(16,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,19,15,6),(2,20,16,7),(3,17,13,8),(4,18,14,5),(9,31,22,25),(10,32,23,26),(11,29,24,27),(12,30,21,28)]])
C22.26C24 is a maximal subgroup of
C43⋊C2 C42⋊8D4 M4(2)⋊23D4 C42.694C23 C42.300C23 C42.301C23 C42.313C23 C22.33C25 C22.38C25 C22.44C25 C22.49C25 D4×C4○D4 C22.69C25 C22.70C25 C22.72C25 C22.83C25 C4⋊2+ 1+4 C4⋊2- 1+4 C22.87C25 C22.88C25 C22.89C25 C22.95C25 C22.96C25 C22.97C25 C22.100C25 C22.101C25 C22.103C25 C22.106C25 C22.108C25 C22.111C25 C22.118C25 C22.135C25 C22.136C25 C22.137C25 C22.138C25 C22.139C25 C22.140C25 C22.143C25 C22.147C25 C22.148C25 C22.149C25 C22.151C25
C42.D2p: C42.45D4 C42.400D4 C42.315D4 C42.53D4 C42.403D4 C42.55D4 C42.59D4 C42.61D4 ...
(C2×C4p)⋊D4: C42.681C23 C42.266C23 (C2×C12)⋊17D4 (C2×C20)⋊17D4 (C2×C28)⋊17D4 ...
(C2×D4).D2p: M4(2)⋊19D4 C4⋊Q8⋊29C4 (C2×D4).135D4 C12⋊(C4○D4) C20⋊(C4○D4) C28⋊(C4○D4) ...
C22.26C24 is a maximal quotient of
C23.167C24 C43⋊9C2 C23.179C24 C4×C4⋊D4 C4×C4⋊1D4 C23.288C24 C42⋊15D4 C23.295C24 C23.328C24 C24.262C23 C24.263C23 C23.352C24 C24.282C23 C23.364C24 C23.391C24 C23.396C24 C23.398C24 C24.308C23 C23.400C24 C23.406C24 C23.412C24 C23.419C24 C24.311C23 C23.443C24 C24.326C23 C24.327C23 C23.455C24 C23.456C24 C23.457C24 C23.458C24 C24.331C23 C24.332C23 C24.583C23 C42⋊23D4 C23.502C24 C42⋊24D4 C42⋊26D4 C24.377C23 C42⋊32D4 C24.378C23 C42⋊46D4 C24.598C23 C42⋊47D4 C43⋊12C2 C43⋊13C2 C42.385C23 C42.386C23 C42.387C23 C42.388C23 C42.389C23
C42.D2p: C4×C4.4D4 C4×C4⋊Q8 C42.162D4 C42.168D4 C42.174D4 C42.175D4 C42.184D4 C42.185D4 ...
C4p⋊Q8⋊C2: C42.390C23 C42.391C23 C12⋊(C4○D4) C20⋊(C4○D4) C28⋊(C4○D4) ...
(C2×D4).D2p: C23.322C24 C24.264C23 C23.345C24 C42⋊21D4 (C2×C12)⋊17D4 (C2×C20)⋊17D4 (C2×C28)⋊17D4 ...
Matrix representation of C22.26C24 ►in GL4(𝔽5) generated by
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
3 | 4 | 0 | 0 |
3 | 2 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
1 | 3 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 0 | 2 |
0 | 0 | 3 | 0 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 |
3 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 3 |
G:=sub<GL(4,GF(5))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[1,0,0,0,0,1,0,0,0,0,4,0,0,0,0,4],[3,3,0,0,4,2,0,0,0,0,0,1,0,0,1,0],[1,0,0,0,3,4,0,0,0,0,0,3,0,0,2,0],[4,0,0,0,0,4,0,0,0,0,0,4,0,0,1,0],[3,0,0,0,0,3,0,0,0,0,3,0,0,0,0,3] >;
C22.26C24 in GAP, Magma, Sage, TeX
C_2^2._{26}C_2^4
% in TeX
G:=Group("C2^2.26C2^4");
// GroupNames label
G:=SmallGroup(64,213);
// by ID
G=gap.SmallGroup(64,213);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,2,217,650,158,69]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^2=b,f^2=a,a*b=b*a,d*c*d=a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*f=f*c,d*e=e*d,d*f=f*d,e*f=f*e>;
// generators/relations
Export